Traditionally, inserting realistic Hardware Trojans (HTs) into complex hardware systems has been a time-consuming and manual process, requiring comprehensive knowledge of the design and navigating intricate Hardware Description Language (HDL) codebases. Machine Learning (ML)-based approaches have attempted to automate this process but often face challenges such as the need for extensive training data, long learning times, and limited generalizability across diverse hardware design landscapes. This paper addresses these challenges by proposing GHOST (Generator for Hardware-Oriented Stealthy Trojans), an automated attack framework that leverages Large Language Models (LLMs) for rapid HT generation and insertion. Our study evaluates three state-of-the-art LLMs - GPT-4, Gemini-1.5-pro, and Llama-3-70B - across three hardware designs: SRAM, AES, and UART. According to our evaluations, GPT-4 demonstrates superior performance, with 88.88% of HT insertion attempts successfully generating functional and synthesizable HTs. This study also highlights the security risks posed by LLM-generated HTs, showing that 100% of GHOST-generated synthesizable HTs evaded detection by an ML-based HT detection tool. These results underscore the urgent need for advanced detection and prevention mechanisms in hardware security to address the emerging threat of LLM-generated HTs. The GHOST HT benchmarks are available at: https://github.com/HSTRG1/GHOSTbenchmarks.git


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员