This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, we show that the refined calculi Ldm^m_nL derive theorems within a restricted class of (forestlike) sequents, allowing us to provide proof-search algorithms that decide single-agent STIT logics. We prove that the proof-search algorithms are correct and terminate.
翻译:这项工作为一类STIT逻辑提供了证据搜索算法和自动反模提取。 有了这个方法, 我们解答了一个有关合成决定程序和STIT逻辑的零排放计算器的开放问题。 引入了一个新的全切完整的切开类, 标有“ 序列” G3LdmL ⁇ m_n ”, 用于多试剂STIT, 最多有 n- 多个选择。 我们通过使用传播规则来改进 Calculi G3LdmL ⁇ m_ n, 并展示其结构规则的可接受性, 由此产生了辅助的 calculi Ldm ⁇ m_ nL。 在单一试剂案例中, 我们显示精炼的calculi Ldm ⁇ m_ nL 显示精炼的计算器在限制类( 类似森林的) 序列中产生理论, 允许我们提供确定单试剂STIT逻辑的校准算法。 我们证明, 校准算法是正确的和终止 。