In a scenario with multiple persons talking simultaneously, the spatial characteristics of the signals are the most distinct feature for extracting the target signal. In this work, we develop a deep joint spatial-spectral non-linear filter that can be steered in an arbitrary target direction. For this we propose a simple and effective conditioning mechanism, which sets the initial state of the filter's recurrent layers based on the target direction. We show that this scheme is more effective than the baseline approach and increases the flexibility of the filter at no performance cost. The resulting spatially selective non-linear filters can also be used for speech separation of an arbitrary number of speakers and enable very accurate multi-speaker localization as we demonstrate in this paper.


翻译:在多个人同时交谈的情况下,信号的空间特征是提取目标信号的最明显特征。在这项工作中,我们开发了一个可以任意定向的深层空间光谱非线性过滤器。为此,我们提议了一个简单而有效的调节机制,根据目标方向确定过滤器经常性层的初始状态。我们表明,这个方案比基线方法更有效,提高了过滤器的灵活性,而无需付出任何性能成本。由此产生的空间选择性非线性过滤器也可以用于任意分隔一些发言者的语音,并使得我们在本文件中显示的非常准确的多语种定位。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员