We study the Requirement Cut problem, a generalization of numerous classical graph partitioning problems including Multicut, Multiway Cut, $k$-Cut, and Steiner Multicut among others. Given a graph with edge costs, terminal groups $(S_1, ..., S_g)$ and integer requirements $(r_1,... , r_g)$; the goal is to compute a minimum-cost edge cut that separates each group $S_i$ into at least $r_i$ connected components. Despite many efforts, the best known approximation for Requirement Cut yields a double-logarithmic $O(\log(g).\log(n))$ approximation ratio as it relies on embedding general graphs into trees and solving the tree instance. In this paper, we explore two largely unstudied structural parameters in order to obtain single-logarithmic approximation ratios: (1) the number of minimal Steiner trees in the instance, which in particular is upper-bounded by the number of spanning trees of the graphs multiplied by $g$, and (2) the depth of series-parallel graphs. Specifically, we show that if the number of minimal Steiner trees is polynomial in $n$, then a simple LP-rounding algorithm yields an $O(\log n)$-approximation, and if the graph is series-parallel with a constant depth then a refined analysis of a known probabilistic embedding yields a $O(depth.\log(g))$-approximation on series-parallel graphs of bounded depth. Both results extend the known class of graphs that have a single-logarithmic approximation ratio.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月18日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员