Edge computing pushes computation closer to data sources, but it also expands the attack surface on resource-constrained devices. This work explores the deployment of the Lightweight Deep Anomaly Detection for Network Traffic (LDPI) integrated as an isolated service within a virtualization framework that provides security by separation. LDPI, adopting a Deep Learning approach, achieved strong training performance, reaching AUC 0.999 (5-fold mean) across the evaluated packet-window settings (n, l), with high F1 at conservative operating points. We deploy LDPI on a laptop-class edge node and evaluate its overhead and performance in two scenarios: (i) comparing it with representative signature-based IDSes (Suricata and Snort) deployed on the same framework under identical workloads, and (ii) while detecting network flooding attacks.
翻译:边缘计算将计算推向更接近数据源的位置,但也扩展了资源受限设备的攻击面。本研究探索了轻量级网络流量深度异常检测模型(LDPI)的部署方案,该模型以隔离服务形式集成于通过隔离机制提供安全性的虚拟化框架中。LDPI采用深度学习方法,在评估的所有数据包窗口设置(n, l)下均表现出优异的训练性能,达到AUC 0.999(五折均值),并在保守操作点保持较高的F1分数。我们将LDPI部署于笔记本电脑级边缘节点,通过两种场景评估其开销与性能:(i)在相同工作负载下,与部署于同一框架的典型基于特征的入侵检测系统(Suricata和Snort)进行对比;(ii)在网络泛洪攻击检测场景中的表现。