We introduce a basis-restricted variant of the Quantum-k-SAT problem, in which each term in the input Hamiltonian is required to be diagonal in either the standard or Hadamard basis. Our main result is that the Quantum-6-SAT problem with this basis restriction is already QMA1-complete, defined with respect to a natural gateset. Our construction is based on the Feynman-Kitaev circuit-to-Hamiltonian construction, with a modified clock encoding that interleaves two clocks in the standard and Hadamard bases. In light of the central role played by CSS codes and the uncertainty principle in the proof of the NLTS theorem of Anshu, Breuckmann, and Nirkhe (STOC '23), we hope that the CSS-like structure of our Hamiltonians will make them useful for progress towards a quantum PCP theorem.
翻译:我们引入了一种基受限的Quantum-k-SAT问题变体,其中要求输入哈密顿量中的每一项必须在对角化于标准基或Hadamard基。我们的主要结果表明,具有此基限制的Quantum-6-SAT问题在定义于自然门集时已是QMA1完全的。我们的构造基于Feynman-Kitaev电路到哈密顿量的转换方法,并采用了一种改进的时钟编码方案,该方案在标准基和Hadamard基中交错嵌入两个时钟。鉴于CSS码和不确定性原理在Anshu、Breuckmann与Nirkhe(STOC '23)的NLTS定理证明中的核心作用,我们希望所构造哈密顿量具有的类CSS结构能推动量子PCP定理的研究进展。