Recent advancements in machine learning techniques for protein folding motivate better results in its inverse problem -- protein design. In this work we introduce a new graph mimetic neural network, MimNet, and show that it is possible to build a reversible architecture that solves the structure and design problems in tandem, allowing to improve protein design when the structure is better estimated. We use the ProteinNet data set and show that the state of the art results in protein design can be improved, given recent architectures for protein folding.
翻译:蛋白质折叠的机器学习技术最近的进步促使其反向问题 -- -- 蛋白质设计 -- -- 产生更好的效果。在这项工作中,我们引入了一个新的图形模拟神经网络MimNet, 并表明有可能同时建立一个可逆的结构,解决结构和设计问题,从而在对结构进行更好的估计时改进蛋白质设计。我们使用蛋白质网数据集,并显示蛋白质设计的最新结果可以改进,因为蛋白质折叠结构最近有了这样的结构。