Recent advancements in machine learning techniques for protein folding motivate better results in its inverse problem -- protein design. In this work we introduce a new graph mimetic neural network, MimNet, and show that it is possible to build a reversible architecture that solves the structure and design problems in tandem, allowing to improve protein design when the structure is better estimated. We use the ProteinNet data set and show that the state of the art results in protein design can be improved, given recent architectures for protein folding.


翻译:蛋白质折叠的机器学习技术最近的进步促使其反向问题 -- -- 蛋白质设计 -- -- 产生更好的效果。在这项工作中,我们引入了一个新的图形模拟神经网络MimNet, 并表明有可能同时建立一个可逆的结构,解决结构和设计问题,从而在对结构进行更好的估计时改进蛋白质设计。我们使用蛋白质网数据集,并显示蛋白质设计的最新结果可以改进,因为蛋白质折叠结构最近有了这样的结构。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
3+阅读 · 2018年4月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
3+阅读 · 2018年4月10日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员