Understanding which parts of a dynamical system cause each other is extremely relevant in fundamental and applied sciences. However, inferring causal links from observational data, namely without direct manipulations of the system, is still computationally challenging, especially if the data are high-dimensional. In this study we introduce a framework for constructing causal graphs from high-dimensional time series, whose computational cost scales linearly with the number of variables. The approach is based on the automatic identification of dynamical communities, groups of variables which mutually influence each other and can therefore be described as a single node in a causal graph. These communities are efficiently identified by optimizing the Information Imbalance, a statistical quantity that assigns a weight to each putative causal variable based on its information content relative to a target variable. The communities are then ordered starting from the fully autonomous ones, whose evolution is independent from all the others, to those that are progressively dependent on other communities, building in this manner a community causal graph. We demonstrate the computational efficiency and the accuracy of our approach on time-discrete and time-continuous dynamical systems including up to 80 variables.


翻译:理解动力系统中各部分之间的因果关联在基础科学与应用科学中均具有极高重要性。然而,从观测数据(即不直接干预系统的情况下)推断因果联系仍存在计算挑战,尤其是在数据高维的情况下。本研究提出一种从高维时间序列构建因果图的框架,其计算成本随变量数量呈线性增长。该方法基于对动态社区的自动识别——这些社区是由相互影响的变量群组成的集合,可在因果图中被描述为单一节点。这些社区通过优化"信息不平衡"这一统计量得以高效识别,该统计量根据每个假定因果变量相对于目标变量的信息含量为其分配权重。随后,社区按照从完全自治型(其演化独立于所有其他社区)到逐步依赖其他社区的层级进行排序,从而构建出社区因果图。我们在包含多达80个变量的时间离散与时间连续动力系统中验证了该方法在计算效率与准确性方面的表现。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员