Optical-flow-based and kernel-based approaches have been widely explored for temporal compensation in satellite video super-resolution (VSR). However, these techniques involve high computational consumption and are prone to fail under complex motions. In this paper, we proposed to exploit the well-defined temporal difference for efficient and robust temporal compensation. To fully utilize the temporal information within frames, we separately modeled the short-term and long-term temporal discrepancy since they provide distinctive complementary properties. Specifically, a short-term temporal difference module is designed to extract local motion representations from residual maps between adjacent frames, which provides more clues for accurate texture representation. Meanwhile, the global dependency in the entire frame sequence is explored via long-term difference learning. The differences between forward and backward segments are incorporated and activated to modulate the temporal feature, resulting in holistic global compensation. Besides, we further proposed a difference compensation unit to enrich the interaction between the spatial distribution of the target frame and compensated results, which helps maintain spatial consistency while refining the features to avoid misalignment. Extensive objective and subjective evaluation of five mainstream satellite videos demonstrates that the proposed method performs favorably for satellite VSR. Code will be available at \url{https://github.com/XY-boy/TDMVSR}


翻译:光流和核方法已被广泛应用于卫星视频超分辨率(VSR)中的时间补偿。然而,这些技术涉及计算成本高,并且在复杂运动情况下容易失败。在本文中,我们提出利用明确定义的时间差异来进行高效和稳健的时间补偿。为了充分利用帧内的时间信息,我们分别对短期和长期的时间间隔进行了建模,因为它们提供了明显不同的互补性质。具体而言,设计了一个短期时间差分模块,用于从相邻帧之间的残差图中提取局部运动表示,从而为准确的纹理表示提供更多线索。同时,通过学习长期的差异来探索整个帧序列中的全局依赖关系。考虑了正向和反向段之间的差异,并激活它们来调节时间特征,从而实现整体全局补偿。此外,还提出了差异补偿单元,以丰富目标帧的空间分布和补偿结果之间的交互,帮助保持空间一致性,同时细化特征以避免不正确对齐。对五个主流卫星视频的广泛客观和主观评估表明,所提出的方法在卫星VSR方面具有优异性能。代码将可在\url{https://github.com/XY-boy/TDMVSR}获取。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
0+阅读 · 2023年5月26日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员