Quantum no-cloning theorem gives rise to the intriguing possibility of quantum copy protection where we encode a program in a quantum state such that a user in possession of k such states cannot create k + 1 working copies. Introduced by Aaronson (CCC 09) over a decade ago, copy protection has proven to be notoriously hard to achieve. In this work, we construct public-key encryption and functional encryption schemes whose secret keys are copy-protected against unbounded collusions in the plain model (i.e. without any idealized oracles), assuming (post-quantum) subexponentially secure iO, one-way functions and LWE. This resolves a long-standing open question of constructing fully collusion-resistant copy-protected functionalities raised by multiple previous works. Prior to our work, copy-protected functionalities were known only in restricted collusion models where either an a-priori bound on the collusion size was needed, in the plain model with the same assumptions as ours (Liu, Liu, Qian, Zhandry [TCC 22]), or adversary was only prevented from doubling their number of working programs, in a structured quantum oracle model (Aaronson [CCC 09]). We obtain our results through a novel technique which uses identity-based encryption to construct unbounded collusion resistant copy-protection schemes from 1-to-2 secure schemes. This is analogous to the technique of using digital signatures to construct full-fledged quantum money from single banknote schemes1 (Lutomirski et al. [ICS 09], Farhi et al. [ITCS 12], Aaronson and Christiano [STOC 12]). We believe our technique is of independent interest. Along the way, we also construct a puncturable functional encryption scheme whose master secret key can be punctured at all functions f such that f (m0) != f (m1). This might also be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月22日
Arxiv
0+阅读 · 2024年1月21日
Arxiv
0+阅读 · 2024年1月20日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年1月22日
Arxiv
0+阅读 · 2024年1月21日
Arxiv
0+阅读 · 2024年1月20日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员