Grasslands, constituting the world's second-largest terrestrial carbon sink, play a crucial role in biodiversity and the regulation of the carbon cycle. Currently, the Irish dairy sector, a significant economic contributor, grapples with challenges related to profitability and sustainability. Presently, grass growth forecasting relies on impractical mechanistic models. In response, we propose deep learning models tailored for univariate datasets, presenting cost-effective alternatives. Notably, a temporal convolutional network designed for forecasting Perennial Ryegrass growth in Cork exhibits high performance, leveraging historical grass height data with RMSE of 2.74 and MAE of 3.46. Validation across a comprehensive dataset spanning 1,757 weeks over 34 years provides insights into optimal model configurations. This study enhances our understanding of model behavior, thereby improving reliability in grass growth forecasting and contributing to the advancement of sustainable dairy farming practices.
翻译:草地作为全球第二大陆地碳汇,在生物多样性和碳循环调控中发挥着关键作用。当前,作为重要经济支柱的爱尔兰乳业部门正面临盈利与可持续性方面的挑战。目前,草生长预测依赖于不切实际的机理模型。为此,我们提出了专为单变量数据集设计的深度学习模型,提供了具有成本效益的替代方案。值得注意的是,一个为预测科克地区多年生黑麦草生长而设计的时间卷积网络表现出优异性能,其利用历史草高数据,均方根误差(RMSE)为2.74,平均绝对误差(MAE)为3.46。通过对跨越34年共1,757周的完整数据集进行验证,本研究揭示了最优模型配置。该研究深化了对模型行为的理解,从而提高了草生长预测的可靠性,并为推进可持续乳业养殖实践做出了贡献。