Censorship resistance is one of the core value proposition of blockchains. A recurring design pattern aimed at providing censorship resistance is enabling multiple proposers to contribute inputs into block construction. Notably, Fork-Choice Enforced Inclusion Lists (FOCIL) is proposed to be included in Ethereum. However, the current proposal relies on altruistic behavior, without a Transaction Fee Mechanism (TFM). This study aims to address this gap by exploring how multiple proposers should be rewarded to incentivize censorship resistance. The main contribution of this work is the identification of TFMs that ensure censorship resistance under bribery attacks, while also satisfying the incentive compatibility properties of EIP-1559. We provide a concrete payment mechanism for FOCIL, along with generalizable contributions to the literature by analyzing 1) incentive compatibility of TFMs in the presence of a bribing adversary, 2) TFMs in protocols with multiple phases of transaction inclusion, and 3) TFMs of protocols in which parties are uncertain about the behavior and the possible bribe of others.


翻译:抗审查性是区块链的核心价值主张之一。旨在提供抗审查性的常见设计模式是允许多个提议者参与区块构建的输入贡献。值得注意的是,分叉选择强制包含列表(FOCIL)已被提议纳入以太坊。然而,当前提案依赖于利他行为,缺乏交易费用机制(TFM)。本研究旨在通过探索应如何奖励多个提议者以激励抗审查性来填补这一空白。本工作的主要贡献在于识别了在贿赂攻击下确保抗审查性、同时满足EIP-1559激励兼容特性的TFM。我们为FOCIL提出了具体的支付机制,并通过分析以下方面为相关文献提供了可推广的贡献:1)存在贿赂对手时TFM的激励兼容性,2)具有多阶段交易包含协议的TFM,以及3)参与方对其他方行为及潜在贿赂不确定时协议的TFM。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
15+阅读 · 2020年2月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员