In this paper, we extend the discussion of the price of anarchy of machine scheduling games to a multi-stage machine setting. The multi-stage setting arises naturally in manufacturing pipelines and distributed computing workflows, when each job must traverse a fixed sequence of processing stages. While the classical makespan price of anarchy of $2 - \frac{1}{m}$ has been established for sequential scheduling on identical machines, the efficiency loss in multi-stage scheduling has, to the best of our knowledge, not been previously analyzed. We assume that each task follows a greedy strategy and gets assigned to the least-loaded machine upon arrival at each stage. Notably, we observe that in multi-stage environments, greedy behavior generally does not coincide with a subgame perfect Nash equilibrium. We continue with analyzing the equilibrium under greedy choices, since it is logical for modeling selfish agents with limited computational power, and may also model a central scheduler performing the common least-load scheduling heuristics. Under this model, we first show that in single-stage scheduling, greedy choice again yields an exact price of anarchy of $2 - \frac{1}{m}$. In multi-stage scheduling, we show that the completion time from one stage to the next increases by at most two times the maximum job execution time. Using this relationship, we derived the price of anarchy of multistage scheduling under greedy choices to lie within $[2 - \frac{1}{m}, 3 - \frac{1}{m}]$, where $m$ denote the maximum number of machines in one stage.
翻译:本文扩展了机器调度博弈的无政府状态代价的讨论,将其推广至多阶段机器调度场景。多阶段调度场景在制造流水线和分布式计算工作流中自然出现,其中每个作业必须经过固定的处理阶段序列。尽管在相同机器上的顺序调度中,经典的完工时间无政府状态代价 $2 - \\frac{1}{m}$ 已得到确立,但据我们所知,多阶段调度中的效率损失此前尚未被分析。我们假设每个任务遵循贪婪策略,并在到达每个阶段时被分配到负载最轻的机器上。值得注意的是,我们观察到在多阶段环境中,贪婪行为通常不与子博弈完美纳什均衡一致。我们继续分析贪婪选择下的均衡,因为这对于建模计算能力有限的自私代理是合理的,也可能模拟执行常见最小负载调度启发式方法的中央调度器。在此模型下,我们首先证明在单阶段调度中,贪婪选择再次产生精确的无政府状态代价 $2 - \\frac{1}{m}$。在多阶段调度中,我们证明从一个阶段到下一个阶段的完成时间最多增加两倍的最大作业执行时间。利用这一关系,我们推导出贪婪选择下多阶段调度的无政府状态代价位于 $[2 - \\frac{1}{m}, 3 - \\frac{1}{m}]$ 区间内,其中 $m$ 表示单个阶段中的最大机器数量。