Digital transformation (DT) has become a strategic priority for public administrations, particularly due to the need to deliver more efficient and citizen-centered services and respond to societal expectations, ESG (Environmental, Social, and Governance) criteria, and the United Nations Sustainable Development Goals (UN SDGs). In this context, the main objective of this study is to propose an innovative methodology to automatically evaluate the level of digital transformation (DT) in public sector organizations. The proposed approach combines traditional assessment methods with Artificial Intelligence (AI) techniques. The methodology follows a dual approach: on the one hand, surveys are conducted using specialized staff from various public entities; on the other, AI-based models (including neural networks and transformer architectures) are used to estimate the DT level of the organizations automatically. Our approach has been applied to a real-world case study involving local public administrations in the Valencian Community (Spain) and shown effective performance in assessing DT. While the proposed methodology has been validated in a specific local context, its modular structure and dual-source data foundation support its international scalability, acknowledging that administrative, regulatory, and DT maturity factors may condition its broader applicability. The experiments carried out in this work include (i) the creation of a domain-specific corpus derived from the surveys and websites of several organizations, used to train the proposed models; (ii) the use and comparison of diverse AI methods; and (iii) the validation of our approach using real data. The integration of technologies such as the IoT, sensor networks, and AI-based analytics can significantly support resilient, agile urban environments and the transition towards more effective and sustainable Smart City models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员