We consider physics-informed neural networks (PINNs) [Raissi et al., J.~Comput. Phys. 278 (2019) 686-707] for forward physical problems. In order to find optimal PINNs configuration, we introduce a hyper-parameter optimization (HPO) procedure via Gaussian processes-based Bayesian optimization. We apply the HPO to Helmholtz equation for bounded domains and conduct a thorough study, focusing on: (i) performance, (ii) the collocation points density $r$ and (iii) the frequency $\kappa$, confirming the applicability and necessity of the method. Numerical experiments are performed in two and three dimensions, including comparison to finite element methods.
翻译:我们考虑物理知情神经网络[Raissi等人,J~Comput.phys. 278 (2019 686-707) 的前方物理问题。为了找到最佳的PINNs配置,我们通过高山基于流程的巴耶西亚优化,引入超参数优化程序。我们将HPO应用于受约束域的赫尔姆霍茨方程式,并进行彻底研究,重点是:(一) 性能,(二) 合用点密度,(二) 美元和(三) 频率,确认该方法的适用性和必要性。在两个和三个方面进行了数字实验,包括与有限元素方法的比较。