Along with the rapid expansion of information technology and digitalization of health data, there is an increasing concern on maintaining data privacy while garnering the benefits in medical field. Two critical challenges are identified: Firstly, medical data is naturally distributed across multiple local sites, making it difficult to collectively train machine learning models without data leakage. Secondly, in medical applications, data are often collected from different sources and views, resulting in heterogeneity and complexity that requires reconciliation. This paper aims to provide a generic Federated Multi-View Learning (FedMV) framework for multi-view data leakage prevention, which is based on different types of local data availability and enables to accommodate two types of problems: Vertical Federated Multi-View Learning (V-FedMV) and Horizontal Federated Multi-View Learning (H-FedMV). We experimented with real-world keyboard data collected from BiAffect study. The results demonstrated that the proposed FedMV approach can make full use of multi-view data in a privacy-preserving way, and both V-FedMV and H-FedMV methods perform better than their single-view and pairwise counterparts. Besides, the proposed model can be easily adapted to deal with multi-view sequential data in a federated environment, which has been modeled and experimentally studied. To the best of our knowledge, this framework is the first to consider both vertical and horizontal diversification in the multi-view setting, as well as their sequential federated learning.


翻译:随着信息技术的迅速扩展和卫生数据的数字化,人们日益关注在医疗领域获取好处的同时维护数据隐私的问题,确定了两个重大挑战:第一,医疗数据自然地分布在多个地方地点,难以在不泄漏数据的情况下集体培训机器学习模型;第二,医疗应用中,数据往往从不同来源和观点收集,导致差异性和复杂性,需要调和;本文件旨在提供一个通用的多视角多视角多视角数据渗漏预防(FedMV)框架,该框架基于不同类型的当地数据可用性,能够容纳两类问题:纵向联邦多视角学习(V-FedMV)和横向联邦多视角学习(H-FedMV)。我们在医疗应用中,从不同来源和观点收集了数据,结果显示,拟议的FedMV方法可以以隐私保护方式充分利用多视角数据,而V-FedMV和H-FedMV方法比其单一视角和对齐工具都更好运行。此外,我们提议的Fed-V-Fide-V-V-MV学习(V-FedMV)和横向多视角学习(H-FedMV)和横向学习(H-Fed-V-Fed-Fed Main)系统框架,这是一个最先进的、最容易的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最现代化的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最先进的、最

1
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
10+阅读 · 2021年3月30日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员