We consider the problem of allocating $m$ indivisible chores to $n$ agents with additive disvaluation (cost) functions. It is easy to show that there are picking sequences that give every agent (that uses the greedy picking strategy) a bundle of chores of disvalue at most twice her share value (maximin share, MMS, for agents of equal entitlement, and anyprice share, APS, for agents of arbitrary entitlement). Aziz, Li and Wu (2022) designed picking sequences that improve this ratio to $\frac{5}{3}$ for the case of equal entitlement. We design picking sequences that improve the ratio to~1.733 for the case of arbitrary entitlement, and to $\frac{8}{5}$ for the case of equal entitlement. (In fact, computer assisted analysis suggests that the ratio is smaller than $1.543$ in the equal entitlement case.) We also prove a lower bound of $\frac{3}{2}$ on the obtainable ratio when $n$ is sufficiently large. Additional contributions of our work include improved guarantees in the equal entitlement case when $n$ is small; introduction of the chore share as a convenient proxy to other share notions for chores; introduction of ex-ante notions of envy for risk averse agents; enhancements to our picking sequences that eliminate such envy; showing that a known allocation algorithm (not based on picking sequences) for the equal entitlement case gives each agent a bundle of disvalue at most $\frac{4n-1}{3n}$ times her APS (previously, this ratio was shown for this algorithm with respect to the easier benchmark of the MMS).


翻译:我们考虑的是将美元不可分割的杂务分配给具有累加性贬值(成本)功能的代理商的问题。我们很容易地看到,有选择顺序,让每个代理商(使用贪婪的挑剔策略)的杂务价值最多为其份额价值的两倍(最大份额,MMS,用于同等应享权利代理商,和任何价格份额,APS,APS)。Aziz、Li和Wu(2022年)设计了将这一比率提高到美元比额的顺序,用于同等待遇。我们设计了将这一比率提高到美元比额的顺序,用于提高美元比额的比额。我们设计了将任意应享待遇比额比重提高到~1.733的顺序,使每个代理商的比重提高到1美元;在每份平分法中引入一个比值比例,用于平分比值比值的顺序。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月26日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员