Machine learning systems are deployed in critical settings, but they might fail in unexpected ways, impacting the accuracy of their predictions. Poisoning attacks against machine learning induce adversarial modification of data used by a machine learning algorithm to selectively change its output when it is deployed. In this work, we introduce a novel data poisoning attack called a \emph{subpopulation attack}, which is particularly relevant when datasets are large and diverse. We design a modular framework for subpopulation attacks, instantiate it with different building blocks, and show that the attacks are effective for a variety of datasets and machine learning models. We further optimize the attacks in continuous domains using influence functions and gradient optimization methods. Compared to existing backdoor poisoning attacks, subpopulation attacks have the advantage of inducing misclassification in naturally distributed data points at inference time, making the attacks extremely stealthy. We also show that our attack strategy can be used to improve upon existing targeted attacks. We prove that, under some assumptions, subpopulation attacks are impossible to defend against, and empirically demonstrate the limitations of existing defenses against our attacks, highlighting the difficulty of protecting machine learning against this threat.


翻译:机器学习系统在关键环境下部署,但可能以意外的方式失败,从而影响预测的准确性。对机器学习的袭击导致对机器学习算法所使用的数据进行对抗性修改,以便在部署时有选择地改变其输出。在这项工作中,我们引入了名为“emph{subpubulity attack}”的新数据中毒袭击,当数据集巨大且种类繁多时,这种袭击特别相关。我们设计了亚人口攻击的模块框架,用不同的构件对它进行即时转换,并表明这些袭击对于各种数据集和机器学习模型是有效的。我们利用影响功能和梯度优化方法进一步优化连续领域的袭击。与现有的后门中毒袭击相比,亚人口攻击具有以下优势:在推断时自然分布的数据点导致分类错误,使袭击变得极为隐秘。我们还表明,我们的攻击战略可以用来改进现有的目标攻击。我们证明,根据某些假设,亚人口攻击是无法防御的,并且用经验证明现有防御我们攻击的局限性。我们强调保护机器学会对付这种威胁的困难。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
专知会员服务
44+阅读 · 2021年5月17日
【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
13+阅读 · 2021年1月31日
专知会员服务
33+阅读 · 2020年12月28日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年12月10日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员