Machine learning has become a crucial part of our lives, with applications spanning nearly every aspect of our daily activities. However, using personal information in machine learning applications has sparked significant security and privacy concerns about user data. To address these challenges, different privacy-preserving machine learning (PPML) frameworks have been developed to protect sensitive information in machine learning applications. These frameworks generally attempt to balance design trade-offs such as computational efficiency, communication overhead, security guarantees, and scalability. Despite the advancements, selecting the optimal framework and parameters for specific deployment scenarios remains a complex and critical challenge for privacy and security application developers. We present Prismo, an open-source recommendation system designed to aid in selecting optimal parameters and frameworks for different PPML application scenarios. Prismo enables users to explore a comprehensive space of PPML frameworks through various properties based on user-defined objectives. It supports automated filtering of suitable candidate frameworks by considering parameters such as the number of parties in multi-party computation or federated learning and computation cost constraints in homomorphic encryption. Prismo models every use case into a Linear Integer Programming optimization problem, ensuring tailored solutions are recommended for each scenario. We evaluate Prismo's effectiveness through multiple use cases, demonstrating its ability to deliver best-fit solutions in different deployment scenarios.
翻译:机器学习已成为我们生活中至关重要的组成部分,其应用几乎涵盖日常活动的所有方面。然而,在机器学习应用中使用个人信息引发了关于用户数据安全与隐私的重大关切。为应对这些挑战,业界已开发出多种隐私保护机器学习框架,以保护机器学习应用中的敏感信息。这些框架通常试图在计算效率、通信开销、安全保证和可扩展性等设计权衡之间取得平衡。尽管技术不断进步,针对特定部署场景选择最优框架及参数,对隐私安全应用开发者而言仍是复杂且关键的技术挑战。本文提出Prismo——一个旨在协助不同隐私保护机器学习应用场景选择最优参数与框架的开源推荐系统。Prismo允许用户基于自定义目标,通过多种属性探索隐私保护机器学习框架的完整设计空间。该系统支持通过考虑多方计算或联邦学习中的参与方数量、同态加密中的计算成本约束等参数,对合适的候选框架进行自动化筛选。Prismo将每个用例建模为线性整数规划优化问题,确保为不同场景推荐定制化解决方案。我们通过多个用例评估Prismo的有效性,证明其在不同部署场景中提供最佳适配解决方案的能力。