A Peskun ordering between two samplers, implying a dominance of one over the other, is known among the Markov chain Monte Carlo community for being a remarkably strong result. It is however also known for being a result that is notably difficult to establish. Indeed, one has to prove that the probability to reach a state $\mathbf{y}$ from a state $\mathbf{x}$, using a sampler, is greater than or equal to the probability using the other sampler, and this must hold for all pairs $(\mathbf{x}, \mathbf{y})$ such that $\mathbf{x} \neq \mathbf{y}$. We provide in this paper a weaker version that does not require an inequality between the probabilities for all these states: essentially, the dominance holds asymptotically, as a varying parameter grows without bound, as long as the states for which the probabilities are greater than or equal to belong to a mass-concentrating set. The weak ordering turns out to be useful to compare lifted samplers for partially-ordered discrete state-spaces with their Metropolis--Hastings counterparts. An analysis in great generality yields a qualitative conclusion: they asymptotically perform better in certain situations (and we are able to identify them), but not necessarily in others (and the reasons why are made clear). A quantitative study in a specific context of graphical-model simulation is also conducted.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员