Modeling time-evolving preferences of users with their sequential item interactions, has attracted increasing attention in many online applications. Hence, sequential recommender systems have been developed to learn the dynamic user interests from the historical interactions for suggesting items. However, the interaction pattern encoding functions in most existing sequential recommender systems have focused on single type of user-item interactions. In many real-life online platforms, user-item interactive behaviors are often multi-typed (e.g., click, add-to-favorite, purchase) with complex cross-type behavior inter-dependencies. Learning from informative representations of users and items based on their multi-typed interaction data, is of great importance to accurately characterize the time-evolving user preference. In this work, we tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns. Towards this end, we propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns, by exploring the evolving correlations across different types of behaviors. The new TGT method endows the sequential recommendation architecture to distill dedicated knowledge for type-specific behavior relational context and the implicit behavior dependencies. Experiments on the real-world datasets indicate that our method TGT consistently outperforms various state-of-the-art recommendation methods. Our model implementation codes are available at https://github.com/akaxlh/TGT.
翻译:在许多在线应用程序中,以相继项目互动为用户的模拟时间变化偏好吸引了越来越多的注意力。因此,已经开发了顺序建议系统,以从历史互动中了解用户对建议项目的兴趣。然而,大多数现有顺序建议系统中的互动模式编码功能侧重于单一类型的用户-项目互动。在许多实时在线平台中,用户-项目互动行为往往具有多种类型(例如,点击、添加至爱好、购买),并具有复杂的跨类型行为互动模式。从用户和项目基于多类型互动数据的信息展示中学习,对于准确描述时间变化用户偏好非常重要。在这项工作中,我们处理动态用户-项目关系学习时,要了解多倍动的用户-项目互动模式。为此,我们提议一个新的TGT(TGT)(TGT)建议框架,以共同捕捉动态短期和远程用户-项目互动模式的交互模式。探索不同类型行为之间不断变化的关联。新的TGTGT(T)T(TGT)方法,即新的TGT(TGT)方法,以及我们连续排序建议系统(TLAL)系统(TLAustomical beal beal beal bealomislational)系统,以显示我们用于特定数据格式的当前定义定义定义的不定期分析。