In this work, the problem of shape optimization, subject to PDE constraints, is reformulated as an $L^p$ best approximation problem under divergence constraints to the shape tensor introduced in Laurain and Sturm: ESAIM Math. Model. Numer. Anal. 50 (2016). More precisely, the main result of this paper states that the $L^p$ distance of the above approximation problem is equal to the dual norm of the shape derivative considered as a functional on $W^{1,p^\ast}$ (where $1/p + 1/p^\ast = 1$). This implies that for any given shape, one can evaluate its distance from being a stationary one with respect to the shape derivative by simply solving the associated $L^p$-type least mean approximation problem. Moreover, the Lagrange multiplier for the divergence constraint turns out to be the shape deformation of steepest descent. This provides a way, as an alternative to the approach by Deckelnick, Herbert and Hinze: ESAIM Control Optim. Calc. Var. 28 (2022), for computing shape gradients in $W^{1,p^\ast}$ for $p^\ast \in ( 2 , \infty )$. The discretization of the least mean approximation problem is done with (lowest-order) matrix-valued Raviart-Thomas finite element spaces leading to piecewise constant approximations of the shape deformation acting as Lagrange multiplier. Admissible deformations in $W^{1,p^\ast}$ to be used in a shape gradient iteration are reconstructed locally. Our computational results confirm that the $L^p$ distance of the best approximation does indeed measure the distance of the considered shape to optimality. Also confirmed by our computational tests are the observations that choosing $p^\ast$ (much) larger than 2 (which means that $p$ must be close to 1 in our best approximation problem) decreases the chance of encountering mesh degeneracy during the shape gradient iteration.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员