Recent research in opinion mining proposed word embedding-based topic modeling methods that provide superior coherence compared to traditional topic modeling. In this paper, we demonstrate how these methods can be used to display correlated topic models on social media texts using SocialVisTUM, our proposed interactive visualization toolkit. It displays a graph with topics as nodes and their correlations as edges. Further details are displayed interactively to support the exploration of large text collections, e.g., representative words and sentences of topics, topic and sentiment distributions, hierarchical topic clustering, and customizable, predefined topic labels. The toolkit optimizes automatically on custom data for optimal coherence. We show a working instance of the toolkit on data crawled from English social media discussions about organic food consumption. The visualization confirms findings of a qualitative consumer research study. SocialVisTUM and its training procedures are accessible online.
翻译:在本文中,我们展示了如何利用这些方法展示社交媒体文本的相关主题模型,使用我们提议的交互式可视化工具包《社交媒体文本》展示相关主题模型,该工具包展示了以节点为主题的图表及其作为边缘的关联性,并用互动方式展示了更多细节,以支持大型文本集的探索,例如,专题、专题和情绪分布的代表性词汇和句子、分级专题组合以及可定制、可定制的、预先定义的专题标签。该工具包自动优化定制数据,以实现最佳一致性。我们展示了从英国社交媒体关于有机食品消费的讨论中采集的数据工具包工作实例。该可视化证实了消费者定性研究的结果。社交视频及其培训程序可以在网上查阅。