The performance of existing underwater object detection methods degrades seriously when facing domain shift caused by complicated underwater environments. Due to the limitation of the number of domains in the dataset, deep detectors easily memorize a few seen domains, which leads to low generalization ability. There are two common ideas to improve the domain generalization performance. First, it can be inferred that the detector trained on as many domains as possible is domain-invariant. Second, for the images with the same semantic content in different domains, their hidden features should be equivalent. This paper further excavates these two ideas and proposes a domain generalization framework (named DMC) that learns how to generalize across domains from Domain Mixup and Contrastive Learning. First, based on the formation of underwater images, an image in an underwater environment is the linear transformation of another underwater environment. Thus, a style transfer model, which outputs a linear transformation matrix instead of the whole image, is proposed to transform images from one source domain to another, enriching the domain diversity of the training data. Second, mixup operation interpolates different domains on the feature level, sampling new domains on the domain manifold. Third, contrastive loss is selectively applied to features from different domains to force the model to learn domain invariant features but retain the discriminative capacity. With our method, detectors will be robust to domain shift. Also, a domain generalization benchmark S-UODAC2020 for detection is set up to measure the performance of our method. Comprehensive experiments on S-UODAC2020 and two object recognition benchmarks (PACS and VLCS) demonstrate that the proposed method is able to learn domain-invariant representations, and outperforms other domain generalization methods.


翻译:现有水下物体探测方法的性能在面临复杂的水下环境造成的域变时会严重退化。 由于数据集域数有限, 深探测器很容易对几个可见域进行记忆化, 从而导致一般化能力低。 有两种共同的想法可以改进域的概括性性性性能。 首先, 可以推断, 在尽可能多的域上受过训练的探测器是域内变异。 其次, 对于不同域内具有相同语义内容的图像, 它们隐藏的特性应该相等。 本文进一步挖掘了这两个想法, 并提议了一个域化框架( 名为 DMC ), 以学习如何在多曼混集和对比性学习的域间域间域间化。 首先, 根据水下图像的形成, 水下环境中的图像是另一个水下环境的线性变。 因此, 风格转换模型, 产生一个线性变矩阵, 而不是整个图像, 提议将图像从一个来源域向另一个域内转成一个20, 丰富培训基准的域多样化。 其次, 将不同对象的域间化操作对不同域域域域的域间化, 在域域域域域内取样内, 将显示新的域内域内域内测算, 性性变换成另一个的域内, 方法 将Sla变为一般的域内, 方法 将S 。 将S d 。 将S dro化法 系统制为一般的域域域内 方法 将进行为一般的域 将 。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
109+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年7月18日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员