Open-set domain adaptation (OSDA) aims to not only recognize target samples belonging to common classes shared by source and target domains but also perceive unknown class samples. Existing OSDA methods suffer from two obstacles. First, a tedious process of manually tuning a hyperparameter $threshold$ is required for most OSDA approaches to separate common and unknown classes. It is difficult to determine a proper threshold when the target domain data is unlabeled. Second, most OSDA methods only rely on confidence values predicted by models to distinguish common/unknown classes. The performance is not satisfied, especially when the majority of the target domain consists of unknown classes. Our experiments demonstrate that combining entropy, consistency, and confidence is a more reliable way of distinguishing common and unknown samples. In this paper, we design a novel threshold self-tuning and cross-domain mixup (TSCM) method to overcome the two drawbacks. TSCM can automatically tune a proper threshold utilizing unlabeled target samples rather than manually setting an empirical hyperparameter. Our method considers multiple criteria instead of only the confidence and uses the threshold generated by itself to separate common and unknown classes in the target domain. Furthermore, we introduce a cross-domain mixup method designed for OSDA scenarios to learn domain-invariant features in a more continuous latent space. Comprehensive experiments illustrate that our method consistently achieves superior performance on different benchmarks compared with various state-of-the-arts.
翻译:开放域适应(OSDA)的目的不仅是承认属于源和目标领域共有的共同类别的目标样本,而且还要察觉到未知类别样本。现有的OSDA方法存在两个障碍。首先,多数OSDA方法需要人工调整超参数$shrest$sorved 来分离普通和未知类别。当目标域数据没有标签时,很难确定一个适当的阈值。第二,多数OSDA方法只能依靠模型预测的信任值来区分普通/未知类别。绩效不尽人意,特别是当目标领域的大部分由未知类别组成时。我们的实验表明,将恒星、一致性和信心结合起来是区分普通和未知样本的更可靠的方法。在本文件中,我们设计了一个新的阈值自我调整和跨界混合(TSSCM)方法来克服这两个括号。TSCM方法可以自动调整一个合适的阈值,使用未标目标样品来区分共同/未知的类别,而不是手动设定一个实验性超标。我们的方法认为多种标准,而不是仅信任标准,并且使用自己生成的阈值来分别区分共同和未知的样本。在目标域域域中,我们采用一个连续的高级实验方法,可以持续地在持续地进行。我们设计的空间模型中,用一个连续的模型,我们设计的轨道模型,用一个连续的模型来学习模型,用一个不同的模型来测量模型来测量。</s>