Static code analyzers are widely used to help find program flaws. However, in practice the effectiveness and usability of such analyzers is affected by the problems of false negatives (FNs) and false positives (FPs). This paper aims to investigate the FNs and FPs of such analyzers from a new perspective, i.e., examining the historical issues of FNs and FPs of these analyzers reported by the maintainers, users and researchers in their issue repositories -- each of these issues manifested as a FN or FP of these analyzers in the history and has already been confirmed and fixed by the analyzers' developers. To this end, we conduct the first systematic study on a broad range of 350 historical issues of FNs/FPs from three popular static code analyzers (i.e., PMD, SpotBugs, and SonarQube). All these issues have been confirmed and fixed by the developers. We investigated these issues' root causes and the characteristics of the corresponding issue-triggering programs. It reveals several new interesting findings and implications on mitigating FNs and FPs. Furthermore, guided by some findings of our study, we designed a metamorphic testing strategy to find FNs and FPs. This strategy successfully found 14 new issues of FNs/FPs, 11 of which have been confirmed and 9 have already been fixed by the developers. Our further manual investigation of the studied analyzers revealed one rule specification issue and additional four FNs/FPs due to the weaknesses of the implemented static analysis. We have made all the artifacts (datasets and tools) publicly available at https://zenodo.org/doi/10.5281/zenodo.11525129.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员