We give a new deterministic construction of integer sensing matrices that can be used for the recovery of integer-valued signals in compressed sensing. This is a family of $n \times d$ integer matrices, $d \geq n$, with bounded sup-norm and the property that no $\ell$ column vectors are linearly dependent, $\ell \leq n$. Further, if $\ell \leq o(\log n)$ then $d/n \to \infty$ as $n \to \infty$. Our construction comes from particular sets of difference vectors of point-sets in $\mathbb R^n$ that cannot be covered by few parallel hyperplanes. We construct examples of such sets on the $0, \pm 1$ grid and use them for the matrix construction. We also show a connection of our constructions to a simple version of the Tarski plank problem.


翻译:我们给出了可用于在压缩传感器中恢复整数值信号的整数感测矩阵的新确定性构造。 这是一个由 $ = time d$ 整数矩阵组成的组合, $ d \ geq n$, 配有 sups-norm 和没有 $ ell 列矢量的属性, $\ ell\ leq n$ 。 此外, 如果$\ leq o (\ log n) $ d/n \ to\ inty$, 以 $ \ 至\ inty$ 。 我们的构造来自 $\ mathbbl Rn$ 中特定的点位差数矢量矢量, 无法由几个平行的超平面覆盖。 我们用 $0 \ pm 1 的电网建这样的集示例, 并用于构建矩阵。 我们还展示了我们的构造与 Tarski plk 问题的简单版本的连接 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员