Climate change affects ocean temperature, salinity and sea level, impacting monsoons and ocean productivity. Future projections by Global Climate Models based on shared socioeconomic pathways from the Coupled Model Intercomparison Project (CMIP) are widely used to understand the effects of climate change. However, CMIP models have significant bias compared to reanalysis in the Bay of Bengal for the time period when both projections and reanalysis are available. For example, there is a 1.5C root mean square error (RMSE) in the sea surface temperature (SST) projections of the climate model CNRM-CM6 compared to the Ocean Reanalysis System (ORAS5). We develop a suite of data-driven deep learning models for bias correction of climate model projections and apply it to correct SST projections of the Bay of Bengal. We propose the use of three different deep neural network architectures: convolutional encoder-decoder UNet, Bidirectional LSTM and ConvLSTM. We also use a baseline linear regression model and the Equi-Distant Cumulative Density Function (EDCDF) bias correction method for comparison and evaluating the impact of the new deep learning models. All bias correction models are trained using pairs of monthly CMIP6 projections and the corresponding month's ORAS5 as input and output. Historical data (1950-2014) and future projection data (2015-2020) of CNRM-CM6 are used for training and validation, including hyperparameter tuning. Testing is performed on future projection data from 2021 to 2024. Detailed analysis of the three deep neural models has been completed. We found that the UNet architecture trained using a climatology-removed CNRM-CM6 projection as input and climatology-removed ORAS5 as output gives the best bias-corrected projections. Our novel deep learning-based method for correcting CNRM-CM6 data has a 15% reduction in RMSE compared EDCDF.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
11+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员