We give the first truly subquadratic time algorithm, with $O^*(n^{2-1/18})$ running time, for computing the diameter of an $n$-vertex unit-disk graph, resolving a central open problem in the literature. Our result is obtained as an instance of a general framework, applicable to different graph families and distance problems. Surprisingly, our framework completely bypasses sublinear separators (or $r$-divisions) which were used in all previous algorithms. Instead, we use low-diameter decompositions in their most elementary form. We also exploit bounded VC-dimension of set systems associated with the input graph, as well as new ideas on geometric data structures. Among the numerous applications of the general framework, we obtain: 1. An $\tilde{O}(mn^{1-1/(2d)})$ time algorithm for computing the diameter of $m$-edge sparse unweighted graphs with constant VC-dimension $d$. The previously known algorithms by Ducoffe, Habib, and Viennot [SODA 2019] and Duraj, Konieczny, and Pot\c{e}pa [ESA 2024] are truly subquadratic only when the diameter is a small polynomial. Our result thus generalizes truly subquadratic time algorithms known for planar and minor-free graphs (in fact, it slightly improves the previous time bound for minor-free graphs). 2. An $\tilde{O}(n^{2-1/12})$ time algorithm for computing the diameter of intersection graphs of axis-aligned squares with arbitrary size. The best-known algorithm by Duraj, Konieczny, and Pot\c{e}pa [ESA 2024] only works for unit squares and is only truly subquadratic in the low-diameter regime. 3. The first algorithms with truly subquadratic complexity for other distance-related problems, including all-vertex eccentricities, Wiener index, and exact distance oracles. (... truncated to meet the arXiv abstract requirement.)


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员