An increasing number of selective laser sintering and selective laser melting machines use off-axis infrared cameras to improve online monitoring and data-driven control capabilities. However, there is still a severe lack of algorithmic solutions to properly process the infrared images from these cameras that has led to several key limitations: a lack of online monitoring capabilities for the laser tracks, insufficient pre-processing of the infrared images for data-driven methods, and large memory requirements for storing the infrared images. To address these limitations, we study over 30 segmentation algorithms that segment each infrared image into a foreground and background. By evaluating each algorithm based on its segmentation accuracy, computational speed, and robustness against spatter detection, we identify promising algorithmic solutions. The identified algorithms can be readily applied to the selective laser sintering and selective laser melting machines to address each of the above limitations and thus, significantly improve process control.

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。

Recently, it was shown that most popular IR measures are not interval-scaled, implying that decades of experimental IR research used potentially improper methods, which may have produced questionable results. However, it was unclear if and to what extent these findings apply to actual evaluations and this opened a debate in the community with researchers standing on opposite positions about whether this should be considered an issue (or not) and to what extent. In this paper, we first give an introduction to the representational measurement theory explaining why certain operations and significance tests are permissible only with scales of a certain level. For that, we introduce the notion of meaningfulness specifying the conditions under which the truth (or falsity) of a statement is invariant under permissible transformations of a scale. Furthermore, we show how the recall base and the length of the run may make comparison and aggregation across topics problematic. Then we propose a straightforward and powerful approach for turning an evaluation measure into an interval scale, and describe an experimental evaluation of the differences between using the original measures and the interval-scaled ones. For all the regarded measures - namely Precision, Recall, Average Precision, (Normalized) Discounted Cumulative Gain, Rank-Biased Precision and Reciprocal Rank - we observe substantial effects, both on the order of average values and on the outcome of significance tests. For the latter, previously significant differences turn out to be insignificant, while insignificant ones become significant. The effect varies remarkably between the tests considered but overall, on average, we observed a 25% change in the decision about which systems are significantly different and which are not.

0
0
下载
预览

One fundamental problem when solving inverse problems is how to find regularization parameters. This article considers solving this problem using data-driven bilevel optimization, i.e. we consider the adaptive learning of the regularization parameter from data by means of optimization. This approach can be interpreted as solving an empirical risk minimization problem, and we analyze its performance in the large data sample size limit for general nonlinear problems. We demonstrate how to implement our framework on linear inverse problems, where we can further show the inverse accuracy does not depend on the ambient space dimension. To reduce the associated computational cost, online numerical schemes are derived using the stochastic gradient descent method. We prove convergence of these numerical schemes under suitable assumptions on the forward problem. Numerical experiments are presented illustrating the theoretical results and demonstrating the applicability and efficiency of the proposed approaches for various linear and nonlinear inverse problems, including Darcy flow, the eikonal equation, and an image denoising example.

0
0
下载
预览

Robot Operating System 2 (ROS2) targets distributed real-time systems. Especially in tight real-time control loops, latency in data processing and communication can lead to instabilities. As ROS2 encourages splitting of the data-processing pipelines into several modules, it is important to understand the latency implications of such modularization. In this paper, we investigate the end-to-end latency of ROS2 data-processing pipeline with different Data Distribution Service (DDS) middlewares. In addition, we profile the ROS2 stack and point out latency bottlenecks. Our findings indicate that end-to-end latency strongly depends on the used DDS middleware. Moreover, we show that ROS2 can lead to 50 % latency overhead compared to using low-level DDS communications. Our results imply guidelines for designing modular ROS2 architectures and indicate possibilities for reducing the ROS2 overhead.

0
0
下载
预览

The study of attentional processing in vision has a long and deep history. Recently, several papers have presented insightful perspectives into how the coordination of multiple attentional functions in the brain might occur. These begin with experimental observations and the authors propose structures, processes, and computations that might explain those observations. Here, we consider a perspective that past works have not, as a complementary approach to the experimentally-grounded ones. We approach the same problem as past authors but from the other end of the computational spectrum, from the problem nature, as Marr's Computational Level would prescribe. What problem must the brain solve when orchestrating attentional processes in order to successfully complete one of the myriad possible visuospatial tasks at which we as humans excel? The hope, of course, is for the approaches to eventually meet and thus form a complete theory, but this is likely not soon. We make the first steps towards this by addressing the necessity of attentional control, examining the breadth and computational difficulty of the visuospatial and attentional tasks seen in human behavior, and suggesting a sketch of how attentional control might arise in the brain. The key conclusions of this paper are that an executive controller is necessary for human attentional function in vision, and that there is a 'first principles' computational approach to its understanding that is complementary to the previous approaches that focus on modelling or learning from experimental observations directly.

0
0
下载
预览

Colorizing a given gray-level image is an important task in the media and advertising industry. Due to the ambiguity inherent to colorization (many shades are often plausible), recent approaches started to explicitly model diversity. However, one of the most obvious artifacts, structural inconsistency, is rarely considered by existing methods which predict chrominance independently for every pixel. To address this issue, we develop a conditional random field based variational auto-encoder formulation which is able to achieve diversity while taking into account structural consistency. Moreover, we introduce a controllability mecha- nism that can incorporate external constraints from diverse sources in- cluding a user interface. Compared to existing baselines, we demonstrate that our method obtains more diverse and globally consistent coloriza- tions on the LFW, LSUN-Church and ILSVRC-2015 datasets.

0
7
下载
预览

Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.

0
5
下载
预览

This work presents a region-growing image segmentation approach based on superpixel decomposition. From an initial contour-constrained over-segmentation of the input image, the image segmentation is achieved by iteratively merging similar superpixels into regions. This approach raises two key issues: (1) how to compute the similarity between superpixels in order to perform accurate merging and (2) in which order those superpixels must be merged together. In this perspective, we firstly introduce a robust adaptive multi-scale superpixel similarity in which region comparisons are made both at content and common border level. Secondly, we propose a global merging strategy to efficiently guide the region merging process. Such strategy uses an adpative merging criterion to ensure that best region aggregations are given highest priorities. This allows to reach a final segmentation into consistent regions with strong boundary adherence. We perform experiments on the BSDS500 image dataset to highlight to which extent our method compares favorably against other well-known image segmentation algorithms. The obtained results demonstrate the promising potential of the proposed approach.

0
4
下载
预览

State-of-the-art systems for semantic image segmentation use feed-forward pipelines with fixed computational costs. Building an image segmentation system that works across a range of computational budgets is challenging and time-intensive as new architectures must be designed and trained for every computational setting. To address this problem we develop a recurrent neural network that successively improves prediction quality with each iteration. Importantly, the RNN may be deployed across a range of computational budgets by merely running the model for a variable number of iterations. We find that this architecture is uniquely suited for efficiently segmenting videos. By exploiting the segmentation of past frames, the RNN can perform video segmentation at similar quality but reduced computational cost compared to state-of-the-art image segmentation methods. When applied to static images in the PASCAL VOC 2012 and Cityscapes segmentation datasets, the RNN traces out a speed-accuracy curve that saturates near the performance of state-of-the-art segmentation methods.

0
6
下载
预览

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

0
10
下载
预览

Robust cross-seasonal localization is one of the major challenges in long-term visual navigation of autonomous vehicles. In this paper, we exploit recent advances in semantic segmentation of images, i.e., where each pixel is assigned a label related to the type of object it represents, to solve the problem of long-term visual localization. We show that semantically labeled 3D point maps of the environment, together with semantically segmented images, can be efficiently used for vehicle localization without the need for detailed feature descriptors (SIFT, SURF, etc.). Thus, instead of depending on hand-crafted feature descriptors, we rely on the training of an image segmenter. The resulting map takes up much less storage space compared to a traditional descriptor based map. A particle filter based semantic localization solution is compared to one based on SIFT-features, and even with large seasonal variations over the year we perform on par with the larger and more descriptive SIFT-features, and are able to localize with an error below 1 m most of the time.

0
7
下载
预览
小贴士
相关论文
Consistency analysis of bilevel data-driven learning in inverse problems
Neil K. Chada,Claudia Schillings,Xin T. Tong,Simon Weissmann
0+阅读 · 1月7日
Tobias Kronauer,Joshwa Pohlmann,Maximilian Matthe,Till Smejkal,Gerhard Fettweis
0+阅读 · 1月6日
On the Control of Attentional Processes in Vision
John K. Tsotsos,Omar Abid,Iuliia Kotseruba,Markus D. Solbach
0+阅读 · 1月5日
Structural Consistency and Controllability for Diverse Colorization
Safa Messaoud,David Forsyth,Alexander G. Schwing
7+阅读 · 2018年9月6日
Mahaman Sani Chaibou,Pierre-Henri Conze,Karim Kalti,Basel Solaiman,Mohamed Ali Mahjoub
4+阅读 · 2018年3月17日
Lane McIntosh,Niru Maheswaranathan,David Sussillo,Jonathon Shlens
6+阅读 · 2018年3月15日
Erik Stenborg,Carl Toft,Lars Hammarstrand
7+阅读 · 2018年1月16日
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
40+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
9+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
5+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
8+阅读 · 2019年3月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
6+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
9+阅读 · 2018年4月27日
深度学习医学图像分析文献集
机器学习研究会
13+阅读 · 2017年10月13日
Top