Despite the notable advancements and versatility of multi-modal diffusion models, such as text-to-image models, their susceptibility to adversarial inputs remains underexplored. Contrary to expectations, our investigations reveal that the alignment between textual and Image modalities in existing diffusion models is inadequate. This misalignment presents significant risks, especially in the generation of inappropriate or Not-Safe-For-Work (NSFW) content. To this end, we propose a novel attack called Prompt-Restricted Multi-modal Attack (PReMA) to manipulate the generated content by modifying the input image in conjunction with any specified prompt, without altering the prompt itself. PReMA is the first attack that manipulates model outputs by solely creating adversarial images, distinguishing itself from prior methods that primarily generate adversarial prompts to produce NSFW content. Consequently, PReMA poses a novel threat to the integrity of multi-modal diffusion models, particularly in image-editing applications that operate with fixed prompts. Comprehensive evaluations conducted on image inpainting and style transfer tasks across various models confirm the potent efficacy of PReMA.


翻译:尽管多模态扩散模型(如文本到图像模型)取得了显著进展并展现出广泛适用性,但其对对抗性输入的敏感性仍未得到充分探究。与预期相反,我们的研究发现现有扩散模型中文本与图像模态之间的对齐并不充分。这种错位带来了显著风险,尤其是在生成不当或不适宜工作场合(NSFW)内容时。为此,我们提出了一种名为提示受限多模态攻击(PReMA)的新型攻击方法,通过修改输入图像并结合任意指定提示词来操纵生成内容,而无需更改提示词本身。PReMA是首个仅通过创建对抗性图像来操纵模型输出的攻击方法,区别于以往主要生成对抗性提示词以产生NSFW内容的方法。因此,PReMA对多模态扩散模型的完整性构成了新型威胁,特别是在使用固定提示词的图像编辑应用中。通过对多种模型在图像修复和风格迁移任务上的综合评估,证实了PReMA的强大有效性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员