Retrieval-augmented generation (RAG) enhances large language models (LLMs) with retrieved context but often suffers from downgraded prefill performance as modern applications demand longer and more complex inputs. Existing caching techniques either preserve accuracy with low cache reuse or improve reuse at the cost of degraded reasoning quality. We present RAGBoost, an efficient RAG system that achieves high cache reuse without sacrificing accuracy through accuracy-preserving context reuse. RAGBoost detects overlapping retrieved items across concurrent sessions and multi-turn interactions, using efficient context indexing, ordering, and de-duplication to maximize reuse, while lightweight contextual hints maintain reasoning fidelity. It integrates seamlessly with existing LLM inference engines and improves their prefill performance by 1.5-3X over state-of-the-art methods, while preserving or even enhancing reasoning accuracy across diverse RAG and agentic AI workloads. Our code is released at: https://github.com/Edinburgh-AgenticAI/RAGBoost.


翻译:检索增强生成(RAG)通过检索上下文增强大语言模型(LLM)的能力,但随着现代应用对更长、更复杂输入的需求,其预填充性能常出现下降。现有缓存技术要么以低缓存重用率为代价保持精度,要么以提高重用率为代价降低推理质量。本文提出RAGBoost,一种高效的RAG系统,通过精度保持的上下文重用机制,在不牺牲精度的前提下实现高缓存重用率。RAGBoost通过高效的上下文索引、排序与去重技术,检测并发会话和多轮交互中重叠的检索项以最大化重用,同时通过轻量级上下文提示保持推理保真度。该系统可与现有LLM推理引擎无缝集成,在多样化RAG与智能体AI工作负载中,相比前沿方法将预填充性能提升1.5-3倍,同时保持甚至提升推理精度。代码已发布于:https://github.com/Edinburgh-AgenticAI/RAGBoost。

0
下载
关闭预览

相关内容

《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
Kaggle知识点:伪标签Pseudo Label
AINLP
40+阅读 · 2020年8月9日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:LDA主题模型
LibRec智能推荐
29+阅读 · 2017年12月4日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Kaggle知识点:伪标签Pseudo Label
AINLP
40+阅读 · 2020年8月9日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
LibRec 每周算法:LDA主题模型
LibRec智能推荐
29+阅读 · 2017年12月4日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员