High-resolution origin-destination (OD) tables are essential for a wide spectrum of transportation applications, from modeling traffic and signal timing optimization to congestion pricing and vehicle routing. However, outside a handful of data rich cities, such data is rarely available. We introduce MOVEOD, an open-source pipeline that synthesizes public data into commuter OD flows with fine-grained spatial and temporal departure times for any county in the United States. MOVEOD combines five open data sources: American Community Survey (ACS) departure time and travel time distributions, Longitudinal Employer-Household Dynamics (LODES) residence-to-workplace flows, county geometries, road network information from OpenStreetMap (OSM), and building footprints from OSM and Microsoft, into a single OD dataset. We use a constrained sampling and integer-programming method to reconcile the OD dataset with data from ACS and LODES. Our approach involves: (1) matching commuter totals per origin zone, (2) aligning workplace destinations with employment distributions, and (3) calibrating travel durations to ACS-reported commute times. This ensures the OD data accurately reflects commuting patterns. We demonstrate the framework on Hamilton County, Tennessee, where we generate roughly 150,000 synthetic trips in minutes, which we feed into a benchmark suite of classical and learning-based vehicle-routing algorithms. The MOVEOD pipeline is an end-to-end automated system, enabling users to easily apply it across the United States by giving only a county and a year; and it can be adapted to other countries with comparable census datasets. The source code and a lightweight browser interface are publicly available.
翻译:高分辨率起讫点(OD)表对于交通建模与信号配时优化、拥堵收费及车辆路径规划等广泛交通应用至关重要。然而,除少数数据资源丰富的城市外,此类数据往往难以获取。本文提出MOVEOD——一个开源数据处理流程,能够将公共数据合成为美国任意县的通勤OD流,并包含细粒度的空间信息与出发时间分布。MOVEOD整合了五大开放数据源:美国社区调查(ACS)的出发时间与通勤时长分布、纵向雇主-家庭动态(LODES)的居住-工作地通勤流、县级行政区划几何数据、OpenStreetMap(OSM)道路网络信息,以及来自OSM与微软的建筑轮廓数据,最终生成统一的OD数据集。我们采用约束抽样与整数规划方法,使OD数据集与ACS及LODES数据相协调。具体步骤包括:(1)匹配各出发分区的通勤者总量,(2)使工作目的地分布与就业分布对齐,(3)将行程时长校准至ACS报告的通勤时间。这确保了OD数据能准确反映通勤模式。我们以田纳西州汉密尔顿县为例验证该框架,在数分钟内生成了约15万条合成出行记录,并将其输入经典与基于学习的车辆路径规划算法基准测试集。MOVEOD流程是一个端到端的自动化系统,用户仅需指定县名与年份即可在全美范围便捷应用;该框架也可适配其他具有类似人口普查数据的国家。相关源代码及轻量级浏览器交互界面已公开提供。