We present LIWhiz, a non-intrusive lyric intelligibility prediction system submitted to the ICASSP 2026 Cadenza Challenge. LIWhiz leverages Whisper for robust feature extraction and a trainable back-end for score prediction. Tested on the Cadenza Lyric Intelligibility Prediction (CLIP) evaluation set, LIWhiz achieves a 22.4% relative root mean squared error reduction over the STOI-based baseline, yielding a substantial improvement in normalized cross-correlation.


翻译:本文提出LIWhiz,一种提交至ICASSP 2026 Cadenza挑战赛的非侵入式歌词可懂度预测系统。LIWhiz利用Whisper进行鲁棒性特征提取,并采用可训练的后端模块进行分数预测。在Cadenza歌词可懂度预测(CLIP)评估集上的测试表明,LIWhiz相较于基于STOI的基线系统实现了22.4%的相对均方根误差降低,在归一化互相关系数上取得了显著提升。

0
下载
关闭预览

相关内容

ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
【NeurIPS2019】图变换网络:Graph Transformer Network
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
【NeurIPS2019】图变换网络:Graph Transformer Network
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员