We introduce PathBench-MIL, an open-source AutoML and benchmarking framework for multiple instance learning (MIL) in histopathology. The system automates end-to-end MIL pipeline construction, including preprocessing, feature extraction, and MIL-aggregation, and provides reproducible benchmarking of dozens of MIL models and feature extractors. PathBench-MIL integrates visualization tooling, a unified configuration system, and modular extensibility, enabling rapid experimentation and standardization across datasets and tasks. PathBench-MIL is publicly available at https://github.com/Sbrussee/PathBench-MIL


翻译:本文介绍PathBench-MIL,一个面向组织病理学中多示例学习(MIL)的开源AutoML与基准测试框架。该系统实现了端到端MIL流程的自动化构建,涵盖预处理、特征提取与MIL聚合等环节,并对数十种MIL模型与特征提取器提供可复现的基准测试。PathBench-MIL集成了可视化工具、统一配置系统与模块化扩展机制,能够支持跨数据集与跨任务的快速实验与标准化研究。PathBench-MIL已在https://github.com/Sbrussee/PathBench-MIL公开提供。

0
下载
关闭预览

相关内容

图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度学习目标检测模型全面综述:Faster R-CNN、R-FCN和SSD
深度学习世界
10+阅读 · 2017年9月18日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员