A nonparametric method to predict non-Markovian time series of partially observed dynamics is developed. The prediction problem we consider is a supervised learning task of finding a regression function that takes a delay embedded observable to the observable at a future time. When delay embedding theory is applicable, the proposed regression function is a consistent estimator of the flow map induced by the delay embedding. Furthermore, the corresponding Mori-Zwanzig equation governing the evolution of the observable simplifies to only a Markovian term, represented by the regression function. We realize this supervised learning task with a class of kernel-based linear estimators, the kernel analog forecast (KAF), which are consistent in the limit of large data. In a scenario with a high-dimensional covariate space, we employ a Markovian kernel smoothing method which is computationally cheaper than the Nystr\"om projection method for realizing KAF. In addition to the guaranteed theoretical convergence, we numerically demonstrate the effectiveness of this approach on higher-dimensional problems where the relevant kernel features are difficult to capture with the Nystr\"om method. Given noisy training data, we propose a nonparametric smoother as a de-noising method. Numerically, we show that the proposed smoother is more accurate than EnKF and 4Dvar in de-noising signals corrupted by independent (but not necessarily identically distributed) noise, even if the smoother is constructed using a data set corrupted by white noise. We show skillful prediction using the KAF constructed from the denoised data.


翻译:正在开发一个非参数性的方法来预测部分观测到的动态的非马尔科维亚时间序列。 我们所考虑的预测问题是一个监督的学习任务, 即找到一个回归函数, 需要在未来某个时间可以观测到的延迟嵌入理论。 当延迟嵌入理论适用时, 提议的回归函数是流程图的一致估算器。 此外, 相应的 Mori- Zwanzig 等方程式用于调整可观测简化的进化过程, 以回归函数为代表的马可维亚术语。 我们通过一个基于内核的线度测算器( KAFAF ) 来完成这一受监督的学习任务, 以一个与大数据限制相一致的类别为主的回归函数。 在使用高维共变异空间的情况下, 我们使用一个马科维的内核内螺流平滑度测算法来计算实现 KAFAF 。 除了保证的理论趋同性一致外, 我们用一个不精确的内核测算法, 我们用一种不精确的计算方法来显示一个不精确的计算数据。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月8日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员