We present a data segmentation method based on a first-order density-induced consensus protocol. We provide a mathematically rigorous analysis of the consensus model leading to the stopping criteria of the data segmentation algorithm. To illustrate our method, the algorithm is applied to two-dimensional shape datasets and selected images from Berkeley Segmentation Dataset. The method can be seen as an augmentation of classical clustering techniques for multimodal feature space, such as DBSCAN. It showcases a curious connection between data clustering and collective behavior.
翻译:我们根据一阶密度诱导的共识协议提出数据分割法。 我们对导致数据分割算法停止标准的协商一致模型进行数学上的严格分析。为了说明我们的方法,该算法应用到两维形状数据集和伯克利分割区数据集的选定图像。该方法可以被视为是DBSCAN等多式联运地物空间古典集群技术的增强。它展示了数据组合与集体行为之间的奇特联系。