The behavior of the network and its stability are governed by both dynamics of individual nodes as well as their topological interconnections. Attention mechanism as an integral part of neural network models was initially designed for natural language processing (NLP), and so far, has shown excellent performance in combining dynamics of individual nodes and the coupling strengths between them within a network. Despite undoubted impact of attention mechanism, it is not yet clear why some nodes of a network get higher attention weights. To come up with more explainable solutions, we tried to look at the problem from stability perspective. Based on stability theory, negative connections in a network can create feedback loops or other complex structures by allowing information to flow in the opposite direction. These structures play a critical role in the dynamics of a complex system and can contribute to abnormal synchronization, amplification, or suppression. We hypothesized that those nodes that are involved in organizing such structures can push the entire network into instability modes and therefore need higher attention during analysis. To test this hypothesis, attention mechanism along with spectral and topological stability analyses was performed on a real-world numerical problem, i.e., a linear Multi Input Multi Output state-space model of a piezoelectric tube actuator. The findings of our study suggest that the attention should be directed toward the collective behaviour of imbalanced structures and polarity-driven structural instabilities within the network. The results demonstrated that the nodes receiving more attention cause more instability in the system. Our study provides a proof of concept to understand why perturbing some nodes of a network may cause dramatic changes in the network dynamics.


翻译:网络的行为及其稳定性由单个节点的动态以及它们的表层互联关系来调节。 注意机制是神经网络模型的一个组成部分,最初是为自然语言处理( NLP)设计的,迄今为止,在将单个节点的动态和它们之间的优势结合到一个网络内方面表现出了出色的表现。 尽管关注机制的影响不容置疑,但尚不清楚为什么网络的某些节点会得到更高的关注权重。 为了从稳定的角度提出更可解释的解决办法,我们试图从稳定的角度来看待这一问题。根据稳定理论,网络中的负面连接可以产生反馈循环或其他复杂的结构,允许信息向相反的方向流动。这些结构在复杂的系统动态中发挥着关键作用,并且能够促进异常的同步、振动或抑制。我们推测,那些参与组织这种结构的节点能够将整个网络推向不稳定模式,因此在分析过程中需要更高的关注度。 为了检验这一假设,与光谱和表层稳定分析一起的注意机制可以产生反馈循环或其他复杂的结构结构结构。 在现实世界的数值模型上,即允许信息向相反方向流动。 这些结构在复杂的系统动态结构结构结构结构中扮演一个更直线性的研究。 多动性、多动性研究。 显示, 极地电动性结构结构结构结构结构结构结构结构结构结构结构结构结构的稳定性的稳定性的稳定性的稳定性研究应该提供一种演示性研究, 以显示我们对方向的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的规律性研究。 。 方向的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
最新《Transformers模型》教程,64页ppt
专知会员服务
304+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
58+阅读 · 2021年11月15日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员