Machine learning-based cybersecurity systems are highly vulnerable to adversarial attacks, while Generative Adversarial Networks (GANs) act as both powerful attack enablers and promising defenses. This survey systematically reviews GAN-based adversarial defenses in cybersecurity (2021--August 31, 2025), consolidating recent progress, identifying gaps, and outlining future directions. Using a PRISMA-compliant systematic literature review protocol, we searched five major digital libraries. From 829 initial records, 185 peer-reviewed studies were retained and synthesized through quantitative trend analysis and thematic taxonomy development. We introduce a four-dimensional taxonomy spanning defensive function, GAN architecture, cybersecurity domain, and adversarial threat model. GANs improve detection accuracy, robustness, and data utility across network intrusion detection, malware analysis, and IoT security. Notable advances include WGAN-GP for stable training, CGANs for targeted synthesis, and hybrid GAN models for improved resilience. Yet, persistent challenges remain such as instability in training, lack of standardized benchmarks, high computational cost, and limited explainability. GAN-based defenses demonstrate strong potential but require advances in stable architectures, benchmarking, transparency, and deployment. We propose a roadmap emphasizing hybrid models, unified evaluation, real-world integration, and defenses against emerging threats such as LLM-driven cyberattacks. This survey establishes the foundation for scalable, trustworthy, and adaptive GAN-powered defenses.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员