Product line extension is a strategically important managerial decision that requires anticipating how consumer segments and purchasing contexts may respond to hypothetical product designs that do not yet exist in the market. Such decisions are inherently uncertain because managers must infer future outcomes from historical purchase data without direct market observations. This study addresses this challenge by proposing a data-driven decision support framework that enables forward-looking what-if analysis based on historical transaction data. We introduce a Conditional Tabular Variational Autoencoder (CTVAE) that learns the conditional joint distribution of product attributes and consumer characteristics from large-scale tabular data. By conditioning the generative process on controllable design variables such as container type, volume, flavor, and calorie content, the proposed model generates synthetic consumer attribute distributions for hypothetical line-extended products. This enables systematic exploration of alternative design scenarios without costly market pretests. The framework is evaluated using home-scan panel data covering more than 20,000 consumers and 700 soft drink products. Empirical results show that the CTVAE outperforms existing tabular generative models in capturing conditional consumer attribute distributions. Simulation-based analyses further demonstrate that the generated synthetic data support knowledge-driven reasoning for assessing cannibalization risks and identifying potential target segments. These findings highlight the value of conditional deep generative models as core components of decision support systems for product line extension planning.
翻译:产品线扩展是一项具有重要战略意义的管理决策,需要预测消费者细分市场和购买情境对尚未上市假设产品设计的可能反应。此类决策本质上具有不确定性,因为管理者必须在缺乏直接市场观测的情况下,从历史购买数据中推断未来结果。本研究通过提出一个数据驱动的决策支持框架来解决这一挑战,该框架支持基于历史交易数据的前瞻性假设分析。我们引入条件表格变分自编码器(CTVAE),该模型能够从大规模表格数据中学习产品属性与消费者特征的联合条件分布。通过将生成过程以可控设计变量(如包装类型、容量、口味和卡路里含量)为条件,所提模型可为假设的线扩展产品生成合成消费者属性分布。这使得无需进行昂贵的市场预测试即可系统探索替代设计方案。该框架使用覆盖超过20,000名消费者和700种软饮料产品的家庭扫描面板数据进行评估。实证结果表明,CTVAE在捕捉条件性消费者属性分布方面优于现有表格生成模型。基于仿真的分析进一步证明,生成的合成数据支持知识驱动推理,可用于评估蚕食风险并识别潜在目标细分市场。这些发现凸显了条件深度生成模型作为产品线扩展规划决策支持系统核心组件的价值。