Deep Neural Networks (DNNs) have already become a crucial computational approach to revealing the spatial patterns in the human brain; however, there are three major shortcomings in utilizing DNNs to detect the spatial patterns in functional Magnetic Resonance Signals: 1). It is a fully connected architecture that increases the complexity of network structures that is difficult to optimize and vulnerable to overfitting; 2). The requirement of large training samples results in erasing the individual/minor patterns in feature extraction; 3). The hyperparameters are required to be tuned manually, which is time-consuming. Therefore, we propose a novel deep nonlinear matrix factorization named Deep Matrix Approximately Nonlinear Decomposition (DEMAND) in this work to take advantage of the shallow linear model, e.g., Sparse Dictionary Learning (SDL) and DNNs. At first, the proposed DEMAND employs a non-fully connected and multilayer-stacked architecture that is easier to be optimized compared with canonical DNNs; furthermore, due to the efficient architecture, training DEMAND can avoid overfitting and enables the recognition of individual/minor features based on a small dataset such as an individual data; finally, a novel rank estimator technique is introduced to tune all hyperparameters of DEMAND automatically. Moreover, the proposed DEMAND is validated by four other peer methodologies via real functional Magnetic Resonance Imaging data in the human brain. In short, the validation results demonstrate that DEMAND can reveal the reproducible meta, canonical, and sub-spatial features of the human brain more efficiently than other peer methodologies.


翻译:深神经网络(DNNS)已经成为揭示人类大脑空间模式的重要计算方法;然而,在利用DNNS检测功能磁共振信号的空间模式方面,存在着三大缺陷:1. 这是一个完全连接的架构,它增加了网络结构的复杂性,难以优化,且容易过度改造;2. 大型培训样本的要求导致特征提取中个人/最小模式的消除;3. 超参数需要人工调整,这是耗时的。因此,我们提议在这项工作中使用一个新的非线性深度非线性矩阵因子化,名为“深基矩阵 约非线性同行间状态脱缩” (DEAND),以利用浅线性模型,例如,微分辨别学习(SDL)和DNNS。 首先,拟议的DEAND采用一个不完全相连、多层结构化的架构,较易与Canoncial DNPs进行优化。 此外,由于高效的架构,培训DEANDA可以避免过度适应,并使得能够自动确认个人/直线性同行间数据结构下的所有结构。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员