In this paper, we present SOCIA-Nabla, an end-to-end, agentic framework that treats simulator construction asinstance optimization over code within a textual computation graph. Specialized LLM-driven agents are embedded as graph nodes, and a workflow manager executes a loss-driven loop: code synthesis -> execution -> evaluation -> code repair. The optimizer performs Textual-Gradient Descent (TGD), while human-in-the-loop interaction is reserved for task-spec confirmation, minimizing expert effort and keeping the code itself as the trainable object. Across three CPS tasks, i.e., User Modeling, Mask Adoption, and Personal Mobility, SOCIA-Nabla attains state-of-the-art overall accuracy. By unifying multi-agent orchestration with a loss-aligned optimization view, SOCIA-Nabla converts brittle prompt pipelines into reproducible, constraint-aware simulator code generation that scales across domains and simulation granularities. This work is under review, and we will release the code soon.
翻译:本文提出SOCIA-Nabla,一种端到端的智能体框架,将仿真器构建视为文本计算图内代码的实例优化问题。我们将专用的LLM驱动智能体嵌入为图节点,并由工作流管理器执行损失驱动的循环:代码合成 -> 执行 -> 评估 -> 代码修复。优化器执行文本梯度下降(TGD),而人在环交互仅用于任务规范确认,从而最小化专家工作量并保持代码本身作为可训练对象。在三个信息物理系统任务(即用户建模、口罩采用和个人移动性)中,SOCIA-Nabla实现了最先进的综合准确率。通过将多智能体编排与损失对齐的优化视角相统一,SOCIA-Nabla将脆弱的提示流水线转化为可复现、具备约束感知的仿真器代码生成方案,能够跨领域和仿真粒度进行扩展。本工作正在审稿中,代码即将发布。