In practice, the use of rounding is ubiquitous. Although researchers have looked at the implications of rounding continuous random variables, rounding may be applied to functions of discrete random variables as well. For example, to infer on suicide excess deaths after a national emergency, authorities may provide a rounded average of deaths before and after the emergency started. Suicide rates tend to be relatively low around the world and such rounding may seriously affect inference on the change of suicide rate. In this paper, we study the scenario when a rounded to nearest integer average is used as a proxy for a non-negative discrete random variable. Specifically, our interest is in drawing inference on a parameter from the pmf of Y , when we get U = n[Y /n] as a proxy for Y . The probability generating function of U , E(U ), and Var(U ) capture the effect of the coarsening of the support of Y . Also, moments and estimators of distribution parameters are explored for some special cases. We show that under certain conditions, there is little impact from rounding. However, we also find scenarios where rounding can significantly affect statistical inference as demonstrated in three examples. The simple methods we propose are able to partially counter rounding error effects. While for some probability distributions it may be difficult to derive maximum likelihood estimators as a function of U , we provide a framework to obtain an estimator numerically.


翻译:实际中,舍入的使用是无处不在的。虽然研究者已经研究了连续随机变量舍入的影响,但舍入也可能应用于离散随机变量的函数。例如,在一个国家紧急情况发生后,为了推断自杀过量死亡人数,当局可能会提供一个在紧急情况发生前后死亡人数的四舍五入平均值。全球自杀率往往相对较低,这种舍入可能严重影响对自杀率变化的推断。在本文中,我们研究了使用四舍五入到最近整数平均值作为非负离散随机变量的代理变量的情况。具体而言,我们的兴趣在于从 Y 的 pmf 推断参数,当我们得到 U = n[Y / n] 作为 Y 的代理变量时。U 的概率生成函数 E(U) 和 Var(U) 捕捉到 Y 支持的粗化效应。此外,我们还探讨了某些特殊情况下的分布参数的矩和估计器。我们表明,在某些条件下,舍入几乎不会产生影响。然而,我们还发现了一些情况,舍入会严重影响统计推断,这在三个示例中得到了证明。我们提出的简单方法能够部分地抵消舍入误差的影响。虽然对于一些概率分布来说,很难导出关于 U 的最大似然估计器函数,但我们提供了一种获得估计器的数值方法。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
专知会员服务
50+阅读 · 2020年12月14日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月25日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员