Data privacy and long-tailed distribution are the norms rather than the exception in many real-world tasks. This paper investigates a federated long-tailed learning (Fed-LT) task in which each client holds a locally heterogeneous dataset; if the datasets can be globally aggregated, they jointly exhibit a long-tailed distribution. Under such a setting, existing federated optimization and/or centralized long-tailed learning methods hardly apply due to challenges in (a) characterizing the global long-tailed distribution under privacy constraints and (b) adjusting the local learning strategy to cope with the head-tail imbalance. In response, we propose a method termed $\texttt{Fed-GraB}$, comprised of a Self-adjusting Gradient Balancer (SGB) module that re-weights clients' gradients in a closed-loop manner, based on the feedback of global long-tailed distribution evaluated by a Direct Prior Analyzer (DPA) module. Using $\texttt{Fed-GraB}$, clients can effectively alleviate the distribution drift caused by data heterogeneity during the model training process and obtain a global model with better performance on the minority classes while maintaining the performance of the majority classes. Extensive experiments demonstrate that $\texttt{Fed-GraB}$ achieves state-of-the-art performance on representative datasets such as CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT, and iNaturalist.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员