This book, Design Patterns in Machine Learning and Deep Learning: Advancing Big Data Analytics Management, presents a comprehensive study of essential design patterns tailored for large-scale machine learning and deep learning applications. The book explores the application of classical software engineering patterns, Creational, Structural, Behavioral, and Concurrency Patterns, to optimize the development, maintenance, and scalability of big data analytics systems. Through practical examples and detailed Python implementations, it bridges the gap between traditional object-oriented design patterns and the unique demands of modern data analytics environments. Key design patterns such as Singleton, Factory, Observer, and Strategy are analyzed for their impact on model management, deployment strategies, and team collaboration, providing invaluable insights into the engineering of efficient, reusable, and flexible systems. This volume is an essential resource for developers, researchers, and engineers aiming to enhance their technical expertise in both machine learning and software design.
翻译:本书《机器学习与深度学习中的设计模式:推动大数据分析管理》系统研究了针对大规模机器学习和深度学习应用的关键设计模式。本书探讨了经典软件工程模式(创建型、结构型、行为型及并发模式)在优化大数据分析系统开发、维护与可扩展性方面的应用。通过实际案例与详细的Python实现,本书弥合了传统面向对象设计模式与现代数据分析环境特殊需求之间的鸿沟。书中重点分析了单例模式、工厂模式、观察者模式和策略模式等关键设计模式对模型管理、部署策略及团队协作的影响,为构建高效、可复用且灵活的系统提供了宝贵的工程实践洞见。本卷是致力于提升机器学习与软件设计领域技术能力的开发者、研究人员及工程师不可或缺的参考资源。