Large Language Models (LLMs) are increasingly used to automate classification tasks in business, such as analyzing customer satisfaction from text. However, the inherent stochasticity of LLMs, in terms of their tendency to produce different outputs for the same input, creates a significant measurement error problem that is often neglected with a single round of output, or addressed with ad-hoc methods like majority voting. Such naive approaches fail to quantify uncertainty and can produce biased estimates of population-level metrics. In this paper, we propose a principled solution by reframing LLM variability as a statistical measurement error problem and introducing a Bayesian latent state model to address it. Our model treats the true classification (e.g., customer dissatisfaction) as an unobserved latent variable and the multiple LLM ratings as noisy measurements of this state. This framework allows for the simultaneous estimation of the LLM's false positive and false negative error rates, the underlying base rate of the phenomenon in the population, the posterior probability of the true state for each individual observation, and the causal impact of a business intervention, if any, on the latent state. Through simulation studies, we demonstrate that our model accurately recovers true parameters where naive methods fail. We conclude that this methodology provides a general and reliable framework for converting noisy, probabilistic outputs from LLMs into accurate and actionable insights for scientific and business applications.
翻译:大语言模型(LLMs)在商业领域越来越多地被用于自动化分类任务,例如从文本中分析客户满意度。然而,LLMs固有的随机性——即对相同输入倾向于产生不同输出的特性——造成了显著的测量误差问题,这一问题常因单轮输出而被忽视,或通过多数投票等临时方法处理。此类朴素方法无法量化不确定性,并可能导致对总体水平指标的估计产生偏差。本文通过将LLM变异性重新定义为统计测量误差问题,并引入贝叶斯潜状态模型来解决该问题,提出了一种原则性解决方案。我们的模型将真实分类(例如客户不满)视为未观测的潜变量,并将多次LLM评分视作对该状态的噪声测量。该框架能够同时估计LLM的假阳性与假阴性错误率、现象在总体中的潜在基础发生率、每个个体观测的真实状态后验概率,以及商业干预(若存在)对潜状态的因果影响。通过模拟研究,我们证明该模型能准确还原真实参数,而朴素方法则无法实现。我们总结认为,该方法为将LLM产生的噪声概率输出转化为科学及商业应用中准确且可操作的见解,提供了一个通用且可靠的框架。