To obtain a more comprehensive activity understanding for a crowded scene, in this paper, we propose a new problem of panoramic human activity recognition (PAR), which aims to simultaneous achieve the individual action, social group activity, and global activity recognition. This is a challenging yet practical problem in real-world applications. For this problem, we develop a novel hierarchical graph neural network to progressively represent and model the multi-granularity human activities and mutual social relations for a crowd of people. We further build a benchmark to evaluate the proposed method and other existing related methods. Experimental results verify the rationality of the proposed PAR problem, the effectiveness of our method and the usefulness of the benchmark. We will release the source code and benchmark to the public for promoting the study on this problem.
翻译:为了更全面地了解拥挤的场景,我们在本文件中提出一个全方位人类活动认识的新问题,目的是同时实现个人行动、社会团体活动和全球活动认识,这是现实世界应用中一个具有挑战性但实际的问题。关于这个问题,我们开发了一个新型的分级图形神经网络,以逐步代表并模拟多层次人类活动和人群相互的社会关系。我们进一步建立一个评估拟议方法和其他相关方法的基准。实验结果验证了拟议的全方位活动问题的合理性、我们的方法的有效性和基准的有用性。我们将向公众发布源代码和基准,以促进关于这一问题的研究。