The increasing need for data privacy and the demand for robust machine learning models have fueled the development of synthetic data generation techniques. However, current methods often succeed in replicating simple summary statistics but fail to preserve both the pairwise and higher-order correlation structure of the data that define the complex, multi-variable interactions inherent in real-world systems. This limitation can lead to synthetic data that is superficially realistic but fails when used for sophisticated modeling tasks. In this white paper, we introduce Generative Correlation Manifolds (GCM), a computationally efficient method for generating synthetic data. The technique uses Cholesky decomposition of a target correlation matrix to produce datasets that, by mathematical proof, preserve the entire correlation structure -- from simple pairwise relationships to higher-order interactions -- of the source dataset. We argue that this method provides a new approach to synthetic data generation with potential applications in privacy-preserving data sharing, robust model training, and simulation.
翻译:对数据隐私日益增长的需求以及对鲁棒机器学习模型的要求,推动了合成数据生成技术的发展。然而,现有方法通常能够成功复现简单的汇总统计量,却难以同时保留数据中定义现实世界系统固有的复杂多变量交互的成对及高阶相关结构。这一局限性可能导致生成的合成数据表面逼真,但在用于复杂建模任务时失效。在本白皮书中,我们提出生成式相关流形(GCM),一种计算高效的合成数据生成方法。该技术通过对目标相关矩阵进行Cholesky分解来生成数据集,经数学证明能够完整保留源数据集的相关结构——从简单的成对关系到高阶交互。我们认为,该方法为合成数据生成提供了新途径,在隐私保护数据共享、鲁棒模型训练和仿真等领域具有潜在应用价值。