Enumeration kernelization was first proposed by Creignou et al. [TOCS 2017] and was later refined by Golovach et al. [JCSS 2022] into two different variants: fully-polynomial enumeration kernelization and polynomial-delay enumeration kernelization. In this paper, we consider the DEGREE-d-CUT problem from the perspective of (polynomial-delay) enumeration kenrelization. Given an undirected graph G = (V, E), a cut F = (A, B) is a degree-d-cut of G if every $u \in A$ has at most d neighbors in B and every $v \in B$ has at most d neighbors in A. Checking the existence of a degree-d-cut in a graph is a well-known NP-hard problem and is well-studied in parameterized complexity [Algorithmica 2021, IWOCA 2021]. This problem also generalizes a well-studied problem MATCHING CUT (set d = 1) that has been a central problem in the literature of polynomial-delay enumeration kernelization. In this paper, we study three different enumeration variants of this problem, ENUM DEGREE-d-CUT, ENUM MIN-DEGREE-d-CUT and ENUM MAX-DEGREE-d-CUT that intends to enumerate all the d-cuts, all the minimal d-cuts and all the maximal degree-d-cuts respectively. We consider various structural parameters of the input and for every fixed $d \geq 1$, we provide polynomial-delay enumeration kernelizations of polynomial size for ENUM DEGREE-d-CUT and ENUM MAX-DEGREE-d-CUT and fully-polynomial enumeration kernels of polynomial size for ENUM MIN-DEGREE-d-CUT.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员