We consider Newton's method for finding zeros of mappings from a manifold $\mathcal X$ into a vector bundle $\mathcal E$. In this setting a connection on $\mathcal E$ is required to render the Newton equation well defined, and a retraction on $\mathcal X$ is needed to compute a Newton update. We discuss local convergence in terms of suitable differentiability concepts, using a Banach space variant of a Riemannian distance. We also carry over an affine covariant damping strategy to our setting. Finally, we will illustrate our results by applying them to generalized non-symmetric eigenvalue problems and providing a numerical example.
翻译:我们研究在流形 $\mathcal X$ 到向量丛 $\mathcal E$ 的映射中求零点的牛顿法。在此框架下,需要 $\mathcal E$ 上的一个联络以使牛顿方程良定,同时需要 $\mathcal X$ 上的一个回缩来计算牛顿迭代步。我们借助黎曼距离的巴拿赫空间变体,在合适的可微性概念下讨论局部收敛性。我们还将仿射协变阻尼策略推广到当前设置中。最后,通过将其应用于广义非对称特征值问题并提供数值算例,以说明我们的结果。