We consider Newton's method for finding zeros of mappings from a manifold $\mathcal X$ into a vector bundle $\mathcal E$. In this setting a connection on $\mathcal E$ is required to render the Newton equation well defined, and a retraction on $\mathcal X$ is needed to compute a Newton update. We discuss local convergence in terms of suitable differentiability concepts, using a Banach space variant of a Riemannian distance. We also carry over an affine covariant damping strategy to our setting. Finally, we will illustrate our results by applying them to generalized non-symmetric eigenvalue problems and providing a numerical example.


翻译:我们研究在流形 $\mathcal X$ 到向量丛 $\mathcal E$ 的映射中求零点的牛顿法。在此框架下,需要 $\mathcal E$ 上的一个联络以使牛顿方程良定,同时需要 $\mathcal X$ 上的一个回缩来计算牛顿迭代步。我们借助黎曼距离的巴拿赫空间变体,在合适的可微性概念下讨论局部收敛性。我们还将仿射协变阻尼策略推广到当前设置中。最后,通过将其应用于广义非对称特征值问题并提供数值算例,以说明我们的结果。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员